Свойства крови – показатель гематокрита, форменные элементы и их количество. Состав плазмы. Функции составных частей плазмы (белков, солей, отдельных ионов и других компонентов).

Содержание

Общие свойства и функции крови.

      Кровь и лимфу принято называть внутренней средой организма, так как они окружают все клетки и ткани, обеспечивая их жизнедеятельность.В отношении своего происхождения кровь, как и другие жидкости организма, может рассматриваться как морская вода, окружавшая простейшие организмы, замкнутая внутрь и претерпевшая в дальнейшем определенные изменения и усложнения.

     Кровь состоит из плазмы и находящихся в ней во взвешенном состоянии форменных элементов (клеток крови). У человека форменные элементы составляют 42,5+-5% для женщин и 47,5+-7% для мужчин. Эта величина называется гематокритный показатель. Циркулирующая в сосудах кровь, органы, в которых происходит образование и разрушение ее клеток, также системы их регуляции объединяются понятием «система крови«.

      Все форменные элементы крови являются продуктами жизнедеятельности не самой крови, а кроветворных тканей (органов) — красного костного мозг, лимфатических узлов, селезенки. Кинетика составных частей крови включает следующие этапы: образование, размножение, дифференциация, созревание, циркуляция, старение, разрушение. Таким образом, существует неразрывная связь форменных элементов крови с вырабатывающими и разрушающими их органами, а клеточный состав периферической крови отражает в первую очередь состояние органов кроветворения и кроверазрушения.

     Кровь, как ткань внутренней среды, обладает следующими особенности: составные ее части образуются вне ее, межуточное вещество ткани является жидким, основная масса крови находится в постоянном движении, осуществляя гуморальные связи в организме.

      При общей тенденции к сохранению постоянства своего морфологического и химического состава, кровь является в то же время одним из наиболее чувствительных индикаторов изменений, происходящих в организме под влиянием как различных физиологических состояний, так и патологических процессов.

«Кровь — зеркало организма!»

                 Основные физиологические функции крови.

      Значение крови как важнейшей части внутренней среды организма многообразно. Можно выделить следующие основные группы функций крови:

     1.Транспортные функции. Эти функции состоят в переносе необходимых для жизнедеятельности веществ (газов, питательных веществ, метаболитов, гормонов, ферментов и т.п.) Транспортируемые вещества могут оставаться в крови неизмененными, или вступать в те или иные, большей частью, нестойкие, соединения с белками, гемоглобином, другими компонентами и транспортироваться в таком состоянии. В число транспортных входят такие функции, как:

      а) дыхательная, заключающаяся в транспорте кислорода из легких к тканям и углекислоты от тканей к легким;

      б) питательная, заключающаяся в переносе питательных веществ от органов пищеварения к тканям, а также в переносе их из депо и в депо в зависимости от потребности в данный момент;

      в)

выделительная (экскреторная), которая заключается в переносе ненужных продуктов обмена веществ (метаболитов), а также излишних солей, кислых радикалов и воды к местам их выделения из организма;

      г) регуляторная, связанная с тем, что кровь является средой, с помощью которой осуществляется химическое взаимодействие отдельных частей организма между собой посредством вырабатываемых тканями или органами гормонов и других биологически активных веществ.

     2. Защитные функции крови связаны с тем, что клетки крови осуществляют защиту организма от инфекционно-токсической агрессии. Можно выделить следующие защитные функции:

     а) фагоцитарная — лейкоциты крови способны пожирать (фагоцитировать) чужие клетки и инородные тела, попавшие в организм;

     б) иммунная — кровь является местом, где находятся различного рода антитела, образующиеся в лимфоцитами в ответ на поступление микроорганизмов, вирусов, токсинов и обеспечивающие приобретенный и врожденный иммунитет.

     в) гемостатическая (гемостаз — остановка кровотечения), заключающаяся в способности крови свертываться в месте ранения кровеносного сосуда и тем самым  предотвращать смертельное кровотечение.

     3. Гомеостатические функции. Заключаются в участии крови и находящихся в ее составе веществ и клеток в поддержании относительного постоянства ряда констант организма. Сюда относятся:

     а) поддержание рН;

     б) поддержание осмотического давления;

     в) поддержание температуры внутренней среды.

     Правда, последняя функция может быть отнесена и к транспортным, так как тепло разносится циркулирующей кровью по телу от места его образования к периферии и наоборот.

 

              Количество крови в организме. Объем циркулирующей крови (ОЦК) .

 

     В настоящее время имеются точные методы для определения общего количества крови в организме. Принцип этих методов заключается в том, что в кровь вводят известное количество вещества, а затем через определенные интервалы времени берутся пробы крови и в них определяется содержание введенного продукта. По степени полученного разбавления высчитывается объем плазмы. После этого кровь центрифугируют в капиллярной градуированной пипетке (гематокрите) для определения гематокритного показателя, т.е. соотношения форменных элементов и плазмы. Зная гематокритный показатель, легко определить и объем крови. В качестве индикаторов применяют нетоксичные медленно выводящиеся соединения, не проникающие через сосудистую стенку в ткани (красители, поливинилпиролидон, железодекстрановый комплекс и др.) В последнее время для этой цели широко используются радиоактивные изотопы.

     Определения показывают, что в сосудах человека весом 70 кг. содержится примерно 5 литров крови, что составляет 7% массы тела ( у мужчин 61,5+-8,6 мл/кг, у женщин — 58,9+-4,9 мл/кг массы тела).

     Введение в кровь жидкости увеличивает на короткое время ее объем. Потери жидкости — уменьшают объем крови. Однако изменения общего количества циркулирующей крови, как правило, невелики, вследствие наличия процессов, регулирующих общий объем жидкости в кровеносном русле. Регуляция объема крови основана на поддержании равновесия между жидкостью в сосудах и тканях. Потери жидкости из сосудов быстро восполняются за счет поступления ее из тканей и наоборот. Более подробно о механизмах регуляции количества крови в организме мы будем говорить позднее.

 

                       Физико-химические свойства крови

                        1. Состав плазмы крови.

     Плазма представляет собою желтоватого цвета слегка опалесцирующую жидкость, и является весьма сложной биологической средой, в состав которой входят белки, различные соли, углеводы, липиды, промежуточные продукты обмена веществ, гормоны, витамины и растворенные газы. В нее входят как органические, так и неорганические вещества (до 9%) и вода (91-92%). Плазма крови находится в тесной связи с тканевыми жидкостями организма. Из тканей в кровь поступает большое количество продуктов обмена, но, благодаря сложной деятельности различных физиологических систем организма, в составе плазмы в норме не происходит существенных изменений.

     Количеств белков, глюкозы, всех катионов и бикарбоната удерживается на постоянном уровне и самые незначительные колебания в их составе приводят к тяжелым нарушениям в нормальной деятельности организма. В то же время содержание таких веществ, как липиды, фосфор, мочевина, может меняться в значительных пределах, не вызывая заметных расстройств в организме. Весьма точно регулируется в крови концентрация солей и водородных ионов.

      Состав плазмы крови имеет некоторые колебания в зависимости от возраста, пола, питания,  географических  особенностей  места  проживания, времени  и  сезона года.

        Белки плазмы крови и их функции. Общее содержание белков крови составляет 6,5-8,5%, в среднем -7,5%. Они различны по составу и количеству входящих в них аминокислот, растворимости, устойчивости в растворе при изменениях рН, температуры, солености, по электрофоретической плотности. Роль белков плазмы весьма многообразна: они принимают участие в регуляции водного обмена, в защите организма от иммуннотоксических воздействий, в транспорте продуктов обмена, гормонов, витаминов, в свертывании крови, питании организма. Обмен их происходит быстро, постоянство концентрации осуществляется путем непрерывного синтеза и распада.

     Наиболее полное разделение белков плазмы крови осуществляется с помощью электрофореза. На электрофореграмме можно выделить 6 фракций белков плазмы:

      Альбумины. Их содержится в крови 4,5-6,7%, т.е. 60-65% всех плазменных белков приходится на долю альбуминов. Они выполняют в основном питательно-пластическую функцию. Не менее важна транспортная роль альбуминов, так как они могут связывать и транспортировать не только метаболиты, но лекарства. При большом накоплении жира в крови часть его тоже связывается альбуминами. Поскольку альбуминам принадлежит очень высокая осмотическая активность, на их долю приходится до 80% всего коллоидно-осмотического (онкотического) давления крови. Поэтому уменьшение количества альбуминов ведет к нарушению водного обмена между тканями и кровью и появлению отеков. Синтез альбуминов происходит в печени. Молекулярный вес их 70-100 тыс., поэтому часть их может походить через почечный барьер и обратно всасываться в кровь.

    Глобулины обычно всюду сопутствуют альбуминам и являются наиболее распространенными из всех известных белков. Общее количество глобулинов в плазме составляет 2,0-3,5%, т.е. 35-40% от всех белков плазмы. По фракциям их содержание следующее:

          альфа1-глобулины — 0,22-0,55 г% (4-5%)

          альфа2-глобулины — 0,41-0,71г% (7-8%)

         бета-глобулины     — 0,51-0,90 г% (9-10%)

         гамма-глобулины   — 0,81-1,75 г% (14-15%)

   Молекулярный вес глобулинов 150-190 тыс. Место образования может быть различным. Большая часть синтезируется в лимфоидных и плазматических клетках ретикулоэндотелиальной системы. Часть — в печени. Физиологическая роль глобулинов многообразна. Так, гамма-глобулины являются носителями иммунных тел. Альфа- и бета- глобулины тоже имеют антигенные свойства, но специфической их функцией является участие в процессах свертывания (это плазменные факторы свертывания крови). Сюда же относятся большая часть ферментов крови, а так же трансферин, церуллоплазмин, гаптоглобины и др. белки.

           Фибриноген. Этот белок составляет 0,2-0,4 г%, около 4% от всех белков плазмы крови. Имеет непосредственное отношение к свертыванию, во время которого выпадает в осадок после полимеризации. Плазма, лишенная фибриногена (фибрина), носит название кровяной сыворотки.

         При различных заболеваниях, особенно приводящих к нарушениям белкового обмена, наблюдаются резкие изменения в содержании и фракционном составе белков плазмы. Поэтому анализ белков плазмы крови имеет диагностическое и прогностическое значение и помогает врачу судить о степени повреждения органов.

         Небелковые азотистые вещества плазмы представлены аминокислотами (4-10 мг%), мочевиной (20-40 мг%), мочевой кислотой, креатином, креатинином, индиканом и др. Все эти продукты белкового обмена в сумме называются остаточным, или небелковым азотом. Содержание остаточного азота плазмы в норме колеблется от 30 до 40 мг. Среди аминокислот одна треть приходится на долю глютамина, который переносит в крови свободный аммиак. Увеличение количества остаточного азота наблюдается главным образом при почечной патологии. Количество небелкового азота в плазме крови мужчин выше, чем в плазме крови женщин.

       Безазотистые органические вещества плазмы крови представлены такими продуктами, как молочная кислота, глюкоза (80-120 мг%), липиды, органические вещества пищи и многие другие. Общее их количество не превышает 300-500 мг%.

       Минеральные вещества плазмы — это в основном катионы Na+, К+, Са+, Mg++ и анионами Cl-, HCO3, HPO4, h3PO4. Общее количество минеральных веществ (электролитов) в плазме достигает 1%. Количество катионов превышает количество анионов. Наибольшее значение имеют следующие минеральные вещества:

       Натрий и калий. Количество натрия в плазме составляет 300-350 мг%, калия — 15-25 мг%. Натрий находится в плазме в виде хлористого натрия, бикарбонатов, а также в связанном с белками виде. Калий тоже. Ионы эти играют важную роль в поддержании кислотно-щелочного равновесия и осмотического давления крови.

       Кальций. Общее его количество в плазме составляет 8-11 мг%. Он находится там или в связанном с белками виде, или в виде ионов. Ионы Са+ выполняют важную функцию в процессах свертывания крови, сократимости и возбудимости. Поддержание нормального уровня кальция в крови происходит при участии гормона паращитовидных желез, натрия — при участии гормонов надпочечников.

         Кроме перечисленных выше минеральных веществ в плазме содержатся магний, хлориды, йод, бром, железо, и ряд микроэлементов, таких как медь, кобальт, марганец, цинк, и др., имеющие большое значение для эритропоэза, ферментативных процессов и т.п.

 

        Физико-химические свойства крови

             1.Реакция крови. Активная реакция крови определяется концентрацией в ней водородных и гидроксильных ионов. В норме кровь имеет слабощелочную реакцию (рН 7,36-7,45, в среднем 7,4+-0,05). Реакция крови является величиной постоянной. Это — обязательное условие нормального течения жизненных процессов. Изменение рН на 0,3-0,4 единицы приводит к тяжелым для организма последствиям. Границы жизни находятся в пределах рН крови 7,0-7,8. Организм удерживает величину рН крови на постоянном уровне благодаря деятельности специальной функциональной системы, в которой главное место уделяется имеющимся в самой крови химическим веществам, которые, нейтрализуя значительную часть поступающих в кровь кислот и щелочей, препятствуют сдвигам рН в кислую или щелочную сторону. Сдвиг рН в кислую сторону называется ацидоз, в щелочную — алкалоз.

     К веществам, постоянно поступающим в кровь и могущим изменить величину рН, относятся молочная кислота, угольная кислота и другие продукты обмена, вещества, поступающие с пищей и др.

     В крови имеются четыре буферные системы — бикарбонатная (углекислота/бикарбонаты), гемоглобиновая (гемоглобин / оксигемоглобин), белковая (кислые белки / щелочные белки) и фосфатная (первичный фосфат / вторичный фосфат).Подробно их работа изучается в курсе физической и коллоидной химии.

      Все буферные системы крови, взятые вместе, создают в крови так называемый щелочной резерв, способный связывать кислые продукты, поступающие в кровь. Щелочной резерв плазмы крови в здоровом организме более или менее постоянен. Он может быть снижен при избыточном поступлении или образовании кислот в организме (например, при интенсивной мышечной работе, когда образуется много молочной и угольной кислот). Если это снижение щелочного резерва не привело еще к реальным изменениям рН крови, то такое состояние называют компенсированным ацидозом. При некомпенсированном ацидозе щелочной резерв расходуется полностью, что ведет к снижению рН (например, так бывает при диабетической коме).

       Когда ацидоз связан с поступлением в кровь кислых метаболитов или других продуктов, он носит название метаболического или не газового. Когда же ацидоз возникает при накоплении в организме преимущественно углекислоты — он называется газовым. При избыточном поступлении в кровь продуктов обмена щелочного характера (чаще с пищей, так как продукты обмена в основном кислые) то щелочной резерв плазмы увеличивается (компенсированный алкалоз). Он может увеличиваться, например,  при усиленной гипервентиляции легких, когда имеет место избыточное удаление углекислоты из организма (газовый алкалоз). Некомпенсированный алкалоз бывает чрезвычайно редко.

       Функциональная система поддержания рН крови (ФСрН) включает в себя целый ряд анатомически неоднородных органов, в комплексе позволяющих достигнуть очень важного для организма полезного результата — обеспечения постоянства рН крови и тканей. Появление кислых метаболитов или щелочных веществ крови сразу же нейтрализуется соответствующими буферными системами и одновременно от специфических хеморецепторов, заложенных как в стенках кровеносных сосудов, так и в тканях, в ЦНС поступают сигналы о возникновении сдвига в реакциях крови (если таковой действительно произошел). В промежуточном и продолговатом отделах мозга находятся центры, регулирующие постоянство реакции крови. Оттуда по афферентным нервам и по гуморальным каналам команды поступают к исполнительным органам, способным исправить нарушение гомеостаза. К числу таких органов относятся все органы выделения (почки, кожа, легкие), которые выбрасывают из организма как сами кислые продукты, так и продукты их реакций с буферными системами. Кроме того, в деятельности ФСрН принимают участие органы ЖКТ, которые могут быть как местом выделения кислых продуктов, так и местом, откуда всасываются необходимые для их нейтрализации вещества. Наконец, к числу исполнительных органов ФСрН относится и печень, где происходит дезинтоксикация потенциально вредных продуктов, как кислых так и щелочных. Надо отметить, что кроме этих внутренних органов, в ФСрН есть и внешнее звено — поведенческое, когда человек целенаправленно ищет во внешней среде вещества, которых ему не хватает для поддержания гомеостаза («Кисленького хочется!»). Схема этой ФС представлена на схеме.     

       2. Удельный вес крови (УВ). УВ крови зависит в основном от числа эритроцитов, содержащегося в них гемоглобина и белкового состава плазмы. У мужчин он равен 1,057, у женщин — 1,053, что объясняется различным содержанием эритроцитов. Суточные колебания не превышают 0.003. Увеличение УВ закономерно наблюдается после физического напряжения и в условиях воздействия высоких температур, что свидетельствует о некотором сгущении крови. Понижение УВ после кровепотери связано с большим притоком жидкости из тканей. Наиболее распространенный метод определения — медно-сульфатный, принцип которого заключается в помещении капли крови в ряд пробирок с растворами сульфата меди известного удельного веса. В зависимости от УВ крови капля тонет, всплывает или плавает в том месте пробирки, где ее поместили.

          3. Осмотические свойства крови. Осмосом называется проникновение молекул растворителя в раствор через разделяющую их полупроницаемую перепонку, через которую не проходят растворенные вещества. Осмос совершается и в том случае, если такая перегородка разделяет растворы с разной концентрацией. При этом растворитель перемещается через мембрану в сторону раствора с большей концентрацией до тех пор, пока эти концентрации не сравняются. Мерой осмотических сил является осмотическое давление (ОД). Оно равно такому гидростатическому давлению, который над приложить к раствору чтобы прекратить в него проникновение молекул растворителя. Величина эта определяется не химической природой вещества, а числом растворенных частиц. Она прямо пропорциональна молярной концентрации вещества. Одно- молярный раствор имеет ОД 22,4 атм., так как осмотическое давление определяется давлением, которое может оказывать в равном объеме растворенное вещество в виде газа (1гМ газа занимает объем 22,4 л. Если это количество газа поместить в сосуд объемом 1л, он будет давить на стенки с силой 22,4 атм.).

       Осмотическое давление следует рассматривать не как свойство растворенного вещества, растворителя или раствора, а как свойство системы, состоящей из раствора, растворенного вещества и разделяющей их полупроницаемой перепонки.

     Кровь как раз является такой системой. Роль полупроницаемой перегородки в этой системе играют оболочки клеток крови и стенки кровеносных сосудов, растворителем служит вода, в которой находятся минеральные и органические вещества в растворенном виде. Эти вещества создают в крови среднюю молярную концентрацию около 0,3 гМ, и поэтому развивают осмотическое давление, равное для крови человека 7,7 — 8,1 атм. Почти 60% этого давления приходится на долю поваренной соли (NaCl).

Величина осмотического давления крови имеет важнейшее физиологическое значение, так как в гипертонической среде вода выходит из клеток (плазмолиз), а в гипотонической — наоборот, входит в клетки, раздувает их и даже может разрушить (гемолиз).

       Правда, гемолиз может наступать не только при нарушении осмотического равновесия, но и под действием химических веществ — гемолизинов. К ним относятся сапонины, желчные кислоты, кислоты и щелочи, аммиак, спирты, змеиный яд, бактериальные токсины и др.

      Величина осмотического давления крови определяется криоскопическим методом, т.е. по точке замерзания крови. У человека температура замерзания плазмы равна -0,56-0,58оС. Осмотическое давление крови человека соответствует давлению 94% NaCl, такой раствор носит название физиологического.

     В клинике, когда возникает необходимость введения в кровь жидкости, например, при обезвоживании организма, или при внутривенном введении лекарств обычно применяют этот раствор, который изотоничен плазме крови. Однако, хотя его и называют физиологическим, он таковым в строгом смысле не является, так как в нем отсутствуют остальные минеральные и органические вещества. Более физиологическими растворами являются такие, как раствор Рингера, Рингер-Локка, Тироде, Крепс-Рингера и т.п. Они приближаются к плазме крови по ионному составу (изоионичны). В ряде случаев, особенно для замены плазмы при кровепотере, применяются жидкости кровезаменители, приближающиеся к плазме не только по минеральному, но и по белковому, крупномолекулярному составу.

      Дело в том, что белки крови играют большую роль в правильном водном обмене между тканями и плазмой. Осмотическое давление белков крови называется онкотическим давлением. Оно равно примерно 28 мм.рт.ст. т.е. составляет менее 1/200 общего осмотического давления плазмы. Но так как капиллярная стенка очень мало проницаема для белков и легко проходима для воды и кристаллоидов, то именно онкотическое давление белков является наиболее эффективным фактором, удерживающим воду в кровеносных сосудах. Поэтому уменьшение количества белков в плазме приводит к появлению отеков, к выходу воды из сосудов в ткани. Из белков крови наибольшее онкотическое давление развивают альбумины.

         Функциональная система регуляции осмотического давления. Осмотическое давление крови млекопитающих и человека в норме держится на относительно постоянном уровне (опыт Гамбургера с введением в кровь лошади 7 л 5% раствора сернокислого натрия). Все это происходит за счет деятельности функциональной системы регуляции осмотического давления, которая тесно увязана с функциональной системой регуляции водно-солевого гомеостаза, так как использует те же исполнительные органы.

        В стенках кровеносных сосудов имеются нервные окончания, реагирующие на изменения осмотического давления (осморецепторы). Раздражение их вызывает возбуждение центральных регуляторных образований в продолговатом и промежуточном мозге. Оттуда идут команды, включающие те или иные органы, например, почки, которые удаляют избыток воды или солей. Из других исполнительных органов ФСОД надо назвать органы пищеварительного тракта, в которых происходит как выведение избытка солей и воды, так и всасывание необходимых для восстановления ОД продуктов; кожу, соединительная ткань которой вбирает в себя при понижении осмотического давления избыток воды или отдает ее последней при повышении осмотического давления. В кишечнике растворы минеральных веществ всасываются только в таких концентрациях, которые способствуют установлению нормального осмотического давления и ионного состава крови. Поэтому при приеме гипертонических растворов (английская соль, морская вода) происходит обезвоживание организма за счет выведения воды в просвет кишечника. На этом основано слабительное действие солей.

       Фактором, способным изменять осмотическое давление тканей, а также крови, является обмен веществ, ибо клетки тела потребляют крупномолекулярные питательные вещества, и выделяют взамен значительно большее число молекул низкомолекулярных продуктов своего обмена. Отсюда понятно, почему венозная кровь, оттекающая от печени, почек, мышц имеет большее осмотическое давление, чем артериальная. Не случайно, что в этих органах находится наибольшее количество осморецепторов.

      Особенно значительные сдвиги осмотического давления в целом организме вызывает мышечная работа. При очень интенсивной работе деятельность выделительных органов может оказаться недостаточной для сохранения осмотического давления крови на постоянном уровне и в итоге может наступить его увеличение. Сдвиг осмотического давления крови до 1,155% NaCl делает невозможным дальнейшее выполнение работы (один из компонентов утомления).        

       4. Суспензионные свойства крови. Кровь является устойчивой суспензией мелких клеток в жидкости (плазме), Свойство крови как устойчивой суспензии нарушается при переходе крови к статическому состоянию, что сопровождается оседанием клеток и наиболее отчетливо проявляется со стороны эритроцитов. Отмеченный феномен используется для оценки суспензионной стабильности крови при определении скорости оседания эритроцитов (СОЭ).

       Если предохранить кровь от свертывания, то форменные элементы можно отделить от плазмы простым отстаиванием. Это имеет практическое клиническое значение, так как СОЭ заметно меняется при некоторых состояниях и болезнях. Так, СОЭ сильно ускоряется у женщин при беременности, у больных туберкулезом, при воспалительных заболеваниях. При стоянии крови эритроциты склеиваются друг с другом (агглютинируют), образуя так называемые монетные столбики, а затем и конгломераты монетных столбиков (агрегация), которые оседают тем быстрее, чем больше их величина.

        Агрегация эритроцитов, их склеивание зависит от изменения физических свойств поверхности эритроцитов (возможно, с изменением знака суммарного заряда клетки с отрицательного на положительный), а также от характера взаимодействия эритроцитов с белками плазмы. Суспензионные свойства крови зависят преимущественно от белкового состава плазмы: увеличение содержания грубодисперсных белков при воспалении сопровождается снижением суспензионной устойчивости и ускорением СОЭ. Величина СОЭ зависит и от количественного соотношения плазмы и эритроцитов. У новорожденных СОЭ равна 1-2 мм/час, у мужчин 4-8 мм/час, у женщин 6-10 мм/час. Определяют СОЭ по методу Панченкова (см. практикум).

        Ускоренной СОЭ, обусловленной изменением белков плазмы особенно при воспалении, соответствует и повышенная агрегация эритроцитов в капиллярах. Преимущественная агрегация эритроцитов в капиллярах связана с физиологическим замедлением тока крови в них. Доказано, что в условиях замедленного кровотока увеличение содержания в крови грубодисперсных белков приводит к более выраженной агрегации клеток. Агрегация эритроцитов, отражая динамичность суспензионных свойств крови, является одним из древнейших защитных механизмов. У беспозвоночных агрегация эритроцитов играет ведущую роль в процессах гемостаза; при воспалительной реакции это приводит к развитию стаза (остановки кровотока в пограничных областях), способствуя отграничению очага воспаления.

       В последнее время доказано, что в СОЭ имеет значение не столько заряд эритроцитов, сколько характер его взаимодействия с гидрофобными комплексами белковой молекулы. Теория нейтрализации заряда эритроцитов белками не доказана.     

      5. Вязкость крови (реологические свойства крови). Вязкость крови, определяемая вне организма, превышает вязкость воды в 3-5 раз и зависит преимущественно от содержания эритроцитов и белков. Влияние белков определяется особенностями структуры их молекул: фибриллярные белки повышают вязкость в значительно большей степени, чем глобулярные. Выраженный эффект фибриногена связан не только с высокой внутренней вязкостью, но обусловлен и вызываемой им агрегацией эритроцитов. В физиологических условиях вязкость крови in vitro нарастает (до 70%) после напряженной физической работы и является следствием изменения коллоидных свойств крови.

       In vivo вязкость крови характеризуется значительной динамичностью и меняется в зависимости от длины и диаметра сосуда и скорости кровотока. В отличие от однородных жидкостей, вязкость которых нарастает с уменьшением диаметра капилляра, со стороны крови отмечается обратное: в капиллярах вязкость уменьшается. Это связано с неоднородностью структуры крови, как жидкости, и изменением характера протекания клеток по сосудам разного диаметра. Так, эффективная вязкость, измеренная особыми динамическими вискозиметрами, такова: аорта — 4,3; малая артерия — 3,4; артериолы — 1,8; капилляры — 1; венулы — 10; малые вены — 8; вены 6,4. Показано, что если бы вязкость крови была бы постоянной величиной, то сердцу пришлось бы развивать в 30-40 раз большую мощность, чтобы протолкнуть кровь через сосудистую систему, так как вязкость участвует в формировании периферического сопротивления.

        Снижение свертываемости крови в условиях введения гепарина сопровождается понижением вязкости и одновременно ускорением скорости кровотока. Показано, что вязкость крови всегда снижается при анемиях, повышается при полицитемиях, лейкемии, некоторых отравлениях. Кислород понижает вязкость крови, поэтому венозная кровь более вязкая, чем артериальная. При повышении температуры вязкость крови понижается. 

dendrit.ru

Физиология системы крови Функции крови

Кровь, лимфа, тканевая жидкость являются внутренней средой организма, в которой протекают многие процессы гомеостаза. Кровь является жидкой тканью и вместе с кроветворными и депонирующими органами (костным мозгом, лимфоузлами, селезенкой) образует физиологическую систему крови.

В организме взрослого человека около 4-6 литров крови или 6-8% от массы тела. Основными функциями системы крови являются:

1.Транспортная, она включает:

а. дыхательную — транспорт дыхательных газов О2 и СО2 от легких к тканям и наоборот;

б. трофическую — перенос питательных веществ, витаминов, микроэлементов;

в. выделительную — транспорт продуктов обмена к органам выделения;

г. терморегуляторную — удаление избытка тепла от внутренних органов и мозга к коже;

д. регуляторную — перенос гормонов и других веществ, входящих в гуморальную систему регуляции организма.

2.Гомеостатическая. Кровь обеспечивает следующие процессы гомеостаза:

а. поддержание рН внутренней среды организма;

б. сохранение постоянства ионного и водно-солевого баланса, а как следствие осмотического давления.

3.Защитная функция. Обеспечивается содержащимися в крови иммунными антителами, неспецифическими противовирусными и антибактериальными веществами, фагоцитарной активностью лейкоцитов.

4.Гемостатическая функция. В крови имеется ферментная система свертывания, препятствующая кровотечению.

Состав крови. Основные физиологические константы крови

Кровь состоит из плазмы и взвешенных в ней форменных элементов —

эритроцитов, лейкоцитов и тромбоцитов. Соотношение объема форменных элементов и плазмы называется гематокритом. В норме форменные элементы занимают 42-45% объема крови, а плазма — 55-58%. У мужчин объем форменных элементов на 2-3% больше, чем у женщин. Гематокрит определяют путем центрифугирования крови, содержащей цитрат натрия, в капиллярах со 100 делениями.

Удельный вес цельной крови 1,052-1,061 г/см3. Ее вязкость равна 4,4-4,7 пуаз, а осмотическое давление 7,6 атм. Большая часть осмотического давления обусловлена находящимися в плазме катионами натрия и калия, а также анионами хлора. Растворы, осмотическое давление которых выше осмотического давления крови, называют гипертоническими. Это, например, 10% раствор хлорида натрия или 40% глюкозы. Если осмотическое давление раствора ниже, чем крови он называется гипотоническим (0,3%.NaCl). В клинике, для переливания больших количеств кровезамещающих растворов, используют изотонические растворы. Их осмотическое давление такое же как у крови. Таким является физиологический раствор, содержащий 0,85% хлорида натрия. Белки крови, являясь коллоидами, также создают небольшое давление называемое онкотическим. Его величина 0,03 атм. или 25-30 мм.рт.ст.

Состав, свойства и значение компонентов плазмы

Удельный вес плазмы 1,025-1,029 г/см3, вязкость 1,9-2,6. Плазма содержит 90-92% воды и 8-10% сухого остатка. В состав сухого остатка входят минеральные вещества (около 0,9%), в основном хлорид натрия, катионы калия, магния, кальция, анионы хлора, гидрокарбонат, фосфатанионы. Кроме того в нем имеются глюкоза, а также продукты гидролиза белков — мочевина, креатинин, аминокислоты и т.д. Они называются остаточным азотом. Содержание глюкозы в плазме 3,6-6,9 ммоль/л, остаточного азота 14,3-28,6 ммоль/л.

Особое значение имеют белки плазмы. Их общее количество 7-8%. Белки состоят из нескольких фракций, но наибольшее значение имеют альбумины, глобулины и фибриноген. Альбуминов содержится 3,5-5%, глобулинов 2-3%, фибриногена 0,3-0,4%. При нормальном питании в организме человека ежесуточно вырабатывается около 17 г альбуминов и 5 г глобулинов.

Функции альбуминов плазмы:

1.Создают большую часть онкотического давления, обеспечивая нормальное распределение воды и ионов между кровью и тканевой жидкостью, мочеобразование.

2.Служат белковым резервом крови, который составляет 200 г белка. Он используется организмом при белковом голодании.

3.Благодаря отрицательному заряду способствуют стабилизации и препятствуют оседанию форменных элементов крови.

4.Поддерживают кислотно-щелочное равновесие, являясь буферной системой.

5.Переносят половые гормоны, желчные пигменты и ионы кальция.

Эти же функции выполняют и другие фракции белков, но в значительно меньшей мере. Им свойственны особые функции.

Глобулины включают четыре субфракции — 1, 2,  и -глобулины. Функции глобулинов:

1.-глобулины участвуют в регуляции эритропоэза, т.к. один из них является эритропоэтином.

2.Необоходимы для свертывания крови, т.к. к ним относится один из факторов свертывания -.

3.Участвуют в растворении тромба, т.к. содержат фермент фибринолитической системы плазминоген.

4.2-альбумин церулоплазмин переносит 90% ионов меди, необходимых организму.

5.Переносят гормоны тироксин и кортизол

6.-глобулин трансферрин переносит основную массу железа.

7.несколько -глобулинов являются факторами свертывания крови.

8.-глобулины выполняют защитную функцию, являясь иммуноглобулинами. При заболеваниях их количество в крови возрастает.

Фибриноген является растворимым предшественником белка фибрина, из которого образуется сгусток крови тромб.

studfile.net

показатель гематокрита, форменные элементы и их количество. Состав плазмы. Функции составных частей плазмы (белков, солей, отдельных ионов и других компонентов).

СИСТЕМА КРОВИ

  1. Кровь как составная часть внутренней среды организма. Понятие о внутренней среде организма. Гомеостазис. Понятие о системе крови (Г.Ф.Ланг). Функции крови. Количество крови в организме и методы его определения.

Система крови – совокупность органов кроветворения, форменных элементов периферической крови, органов кроверазрушения и регуляторного аппарата.

Внутренняя среда организма – совокупность крови, лимф, тканевой и цереброспинальной жидкости. Из нее ткани получают все необходимое для жизнедеятельности и отдают в нее метаболиты.

Основой внутренней среды является кровь. Кровь дает начало тканевой жидкости, а из нее происходит лимфа, лимфа возвращается в кровь. Количество тканевой жидкости в организме взрослого человека в среднем составляет 29 – 30 %, крови – 7 – 8 % от массы тела. В состоянии покоя до 45 – 50 % всей крови находится в кровяных депо (селезенке, печени, легких и подкожном сосудистом сплетении). Определение количества крови в организме заключается в следующем: в кровь вводят нейтральную краску, радиоактивные изотопы или коллоидный раствор и через определенное время, когда вводимый маркер равномерно распределится, определяют его концентрацию. Зная количество введенного вещества, легко рассчитать количество крови в организме. При этом следует учитывать, распределяется ли вводимый субстрат в плазме или полностью проникает в эритроциты. В дальнейшем определяют гематокритное число, после чего производят расчет общего количества крови в организме. Внутренняя среда организма обладает динамическим равновесием, относительным постоянством химического состава и свойств. Такое состояние носит название гомеостаз (от греч. homoios – подобный, stasis – стояние).

Функции крови:

дыхательная: транспортирует кислород к тканям от легких и углекислый газ от тканей к легким

трофическая: переносит питательные вещества от стенки пищеварительного тракта к тканям

обменная: участвует в вводно-солевом обмене

экскреторная: переносит конечные продукты обмена от тканей к почкам

гомеостатическая: участвует в поддержании постоянства внутренней среды организма

регуляторная: переносит гормоны и другие биологически активные вещества, обеспечивая гуморальную регуляцию

терморегуляционная: кровь согревается в печени и мышцах и распределяет и перераспределяет тепло в организме

защитная: в крови имеются антитела; лейкоциты выполняют функцию фагоцитоза генетически чужеродных частиц; кровь способна свертываться, предотвращая кровопотерю.

Кровь состоит из плазмы и форменных элементов: эритроциты, лейкоциты, тромбоциты. Плазма 55- 60 %, форменные элементы 40 – 45 %. Соотношение плазмы и форменных элементов — показатель гематокрита. Эритроциты количество у Ж – 3,7 – 4,7 *10 л, у М – 4,5 – 5,5 *10(12) л. Лейкоциты – 4*10(9) – 9*10(9), тромбоциты – 180*10(9)- 320*10(9).

Плазма – жидкая часть крови, оставшаяся после удаления из нее форменных элементов. В состав входят органические (9 %) и неорганические вещества (1 %), 90 % вода.

Белки: глобулины, альбумины, фибриноген. Значение

  1. Обеспечивают осмотическое давление (25 – 30 мм рт ст)

  2. Часть являются антителами

  3. Участвуют в процессе свертывания крови

  4. Обеспечивают вязкость крови

  5. Регулируют Ph (белковый буфер)

  6. Выполняют транспортную функцию

Альбумины составляют 50 – 60 % белков плазмы. Они образуются в печени и костном мозге, обладают высокой гидрофильностью, играют главную роль в создании онкотического давления крови, выполняют транспортную функцию за счет большого числа в них активных полярных диссоциированых групп (связывают и переносят различные вещества, в частности гормоны и лекарственные средства), выполняют питательно – пластическую функцию, т к являются резервным белком при голодании. Глобулины составляют 35 – 40 % от общего количества белков. В состав глобулинов входят: 1. Липоидный компонент – липопротеиды

2. углеводный компонент – гликопротеиды

3. металлы – металлопротеиды.

Они выполняют защитную функцию, являются иммунными антителами.

Азотсодержащая часть небелковой природы – промежуточные продукты обмена белков.

Безазотистые органические вещества: глюкоза (3,5 – 6,4 мМоль/л), молочная и пировиноградная кислоты, жиры (липиды, фосфолипиды, жирные кислоты, лецицин).

В состав органических веществ плазмы также входят БАВ – ферменты, витамины, гормоны.

3. Основные физико-химические показатели крови, факторы, на них влияющие, значение поддержания их постоянства. Буферные системы крови. Понятие о щелочном резерве.

Относительная плотность крови. Колеблется от 1,058 до 1,062 и зависит преимущественно от содержания эритроцитов. Относительная плотность плазмы крови в основном определяется концентрацией белков и составляет 1,029—1,032.

Вязкость крови. Определяется по отношению к вязкости воды и соответствует 4,5—5,0. Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы. Вязкость венозной крови несколько больше, чем артериальной, что обусловлено поступлением в эритроциты СО2, благодаря чему незначительно увеличивается их размер. Вязкость крови возрастает при опорожнении депо крови, содержащей большее число эритроцитов. Вязкость плазмы не превышает 1,8—2,2. При обильном белковом питании вязкость плазмы, а, следовательно, и крови может повышаться.

Осмотическое давление крови. Осмотическим давлением называется сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более концентрированный раствор. Осмотическое давление крови вычисляют криоскопическим методом с помощью определения депрессии (точки замерзания), которая для крови составляет 0,56—0,58°С. Осмотическое давление крови равно приблизительно 7,6 атм.

Осмотическое давление крови зависит в основном от растворенных в ней низкомолекулярных соединений, главным образом солей. Около 60% этого давления создается NaCl. Осмотическое давление в крови, лимфе, тканевой жидкости, тканях приблизительно одинаково и отличается постоянством. Даже в случаях, когда в кровь поступает значительное количество воды или соли, осмотическое давление не претерпевает существенных изменений. При избыточном поступлении в кровь вода быстро выводится почками и переходит в ткани и клетки, что восстанавливает исходную величину осмотического давления. Если же в крови повышается концентрация солей, то в сосудистое русло переходит вода из тканевой жидкости, а почки начинают усиленно выводить соли. Продукты переваривания белков, жиров и углеводов, всасывающиеся в кровь и лимфу, а также низкомолекулярные продукты клеточного метаболизма могут изменять осмотическое давление в небольших пределах.

Поддержание постоянства осмотического давления играет чрезвычайно важную роль в жизнедеятельности клеток.

Онкотическое давление. Является частью осмотического и зависит от содержания крупномолекулярных соединений (белков) в растворе. Хотя концентрация белков в плазме довольно велика, общее количество молекул из-за их большой молекулярной массы относительно мало, благодаря чему онкотическое давление не превышает 30 мм рт.ст. Онкотическое давление в большей степени зависит от альбуминов (80% онкотического давления создают альбумины), что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме.

Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровезамещающие растворы должны содержать в своем составе коллоидные вещества, способные удерживать воду.

При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.

Концентрация водородных ионов и регуляция рН крови. В норме рН крови соответствует 7,36, т. е. реакция слабоосновная. Колебания величины рН крови крайне незначительны. Так, в условиях покоя рН артериальной крови соответствует 7,4, а венозной — 7,34. В клетках и тканях рН достигает 7,2 и даже 7,0, что зависит от образования в них в процессе обмена веществ «кислых» продуктов метаболизма. При различных физиологических состояниях рН крови может изменяться как в кислую (до 7,3), так и в щелочную (до 7,5) сторону. Более значительные отклонения рН сопровождаются тяжелейшими последствиями для организма. Так, при рН крови 6,95 наступает потеря сознания, и если эти сдвиги в кратчайший срок не ликвидируются, то неминуема смерть. Если же концентрация ионов Н+ уменьшается и рН становится равным 7,7, то наступают тяжелейшие судороги (тетания), что также может привести к смерти.

В процессе обмена веществ ткани выделяют в тканевую жидкость, а следовательно, и в кровь «кислые» продукты обмена, что должно приводить к сдвигу рН в кислую сторону. Так, в результате интенсивной мышечной деятельности в кровь человека может поступать в течение нескольких минут до 90 г молочной кислоты. Реакция же крови при этих условиях практически не изменяется, что объясняется наличием буферных систем крови. Кроме того, в организме постоянство рН сохраняется за счет работы почек и легких, удаляющих из крови СО2, избыток солей, кислот и оснований (щелочей).

Постоянство рН крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы.

studfile.net

57.1Понятие о системе крови(Ланг), ее свойства, состав ,функции.Состав крови. Основные физиологические константы крови и механизмы их поддержания.

Ланг считал, что в систему крови входят кровь, органы кроветворения и кроверазрушения, а также аппарат регуляции. Кровь как ткань обладает следующими особенностями: 1) все ее составные части образуются за пределами сосудистого русла; 2) межклеточное вещество ткани является жидким; 3) основная часть крови находится в постоянном движении

Кровь состоит из жидкой части — плазмы и форменных элементов — эритроцитов, лейкоцитов и тромбоцитов. У взрослого человека форменные элементы крови составляют около 40—48%, а плазма — 52—60.

Основными функциями:1Транспортная функция. Кровь переносит необходимые для жизнедеятельности органов и тканей различные вещества, газы и продукты обмена Благодаря транспорту осуществляется дыхательная функция крови. Кровь осуществляет перенос гормонов, питательных веществ, продуктов обмена, ферментов, различных биологически активных веществ, солей, кислот, щелочей, катионов, анионов, микроэлементов и др. С транспортом связана и экскреторная функция крови — выделение из организма метаболитов, отслуживших свой срок или находящихся в данный момент в избытке веществ.2 Защитные функции. С наличием в крови лейкоцитов связана специфическая (иммунитет) и неспецифическая (главным образом фагоцитоз) защита организма. К защитным функциям относится сохранение циркулирующей крови в жидком состоянии и остановка кровотечения (гемостаз) в случае нарушения целостности сосудов.3Гуморальная регуляция деятельности организма. В первую очередь связана с поступлением в циркулирующую кровь гормонов, биологически активных веществ и продуктов обмена. Благодаря регуляторной функции крови осуществляется сохранение постоянства внутренней среды организма, водного и солевого баланса тканей и температуры тела, контроль за интенсивностью обменных процессов, регуляция гемопоэза и других физиологических функций.

Основные константы крови:1Относительная плотность крови. Колеблется от 1,058 до 1,062 и зависит преимущественно от содержания эритроцитов. Относительная плотность плазмы крови в основном определяется концентрацией белков и составляет 1,029—1,032 . 2 Определяется по отношению к вязкости воды и соответствует 4,5—5,0. Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы.. Вязкость плазмы не превышает 1,8—2,2. При обильном белковом питании вязкость плазмы, а, следовательно, и крови может повышаться. 3. Осмотическим давлением называется сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более концентрированный раствор 0,56—0,58°С. 4Онкотическое давление.не превышает 30 мм рт.ст. Онкотическое давление в большей степени зависит от альбуминов. 5.Температура крови37—40°С 6.Общее количество крови в организме взрослого человека составляет в среднем 6—8%, или 1/13, массы тела, т. е. приблизительно 5—6 л.

58.2 Состав плазмы крови. Осмотическое давление крови фс ,обеспечивающая постоянство осмотическое давления крови.

В состав плазмы крови входят вода (90—92%) и сухой остаток (8—10%). Сухой остаток состоит из органических и неорганических веществ. К органическим веществам плазмы крови относятся: 1) белки плазмы — альбумины (около 4,5%), глобулины (2—3,5%), фибриноген (0,2—0,4%). Общее количество белка в плазме составляет 7—8%;2) небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатин, креатинин, аммиак). Общее количество небелкового азота в плазме (так называемого остаточного азота) составляет 11 —15 ммоль/л (30—40 мг%). При нарушении функции почек, выделяющих шлаки из организма, содержание остаточного азота в крови резко возрастает;3) безазотистые органические вещества: глюкоза — 4,4—6,65 ммоль/л (80—120 мг%), нейтральные жиры, липиды;4) ферменты и проферменты: некоторые из них участвуют в процессах свертывания крови и фибринолиза, в частности протромбин и профибринолизин. В плазме содержатся также ферменты, расщепляющие гликоген, жиры, белки и др.Неорганические вещества плазмы крови составляют около 1 % от ее состава. К этим веществам относятся преимущественно катионы — Ка+, Са2+, К+, Мg2+ и анионы Сl, НРO4, НСО3

Осмотическое давление крови. Осмотическим давлением называется сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более концентрированный раствор. Осмотическое давление крови вычисляют криоскопическим методом с помощью определения депрессии (точки замерзания), которая для крови составляет 0,56—0,58°С. Депрессия молярного раствора (раствор, в котором растворена 1 грамм-молекула вещества в 1 л воды) соответствует 1,86°С. Подставив значения в уравнение Клапейрона, легко рассчитать, что осмотическое давление крови равно приблизительно 7,6 атм.

Осмотическое давление крови зависит в основном от растворенных в ней низкомолекулярных соединений, главным образом солей. Около 60% этого давления создается NaCl. Осмотическое давление в крови, лимфе, тканевой жидкости, тканях приблизительно одинаково и отличается постоянством. Даже в случаях, когда в кровь поступает значительное количество воды или соли, осмотическое давление не претерпевает существенных изменений. При избыточном поступлении в кровь вода быстро выводится почками и переходит в ткани и клетки, что восстанавливает исходную величину осмотического давления. Если же в крови повышается концентрация солей, то в сосудистое русло переходит вода из тканевой жидкости, а почки начинают усиленно выводить соли. Продукты переваривания белков, жиров и углеводов, всасывающиеся в кровь и лимфу, а также низкомолекулярные продукты клеточного метаболизма могут изменять осмотическое давление в небольших пределах.

studfile.net

Реологические свойства крови.

Кровь — суспензия клеток и частиц, взвешенных в коллоидах плазмы. Это типично неньютоновская жидкость, вязкость которой, в отличие от ньютоновской, в различных частях системы кровообращения различается в сотни раз, в зависимости от изменения скорости кровотока. 

Для вязкостных свойств крови имеет значение белковый состав плазмы. Так, альбумины снижают вязкость и способность клеток к агрегации, тогда как глобулины действуют противоположно. Особенно активен в повышении вязкости и наклонности клеток к агрегации фибриноген, уровень которого меняется при любых стрессовых состояниях. Гиперлипидемия и гиперхолестеринемия также способствует нарушению реологических свойств крови. 

Гематокрит — один из важных показателей, связанных с вязкостью крови. Чем выше гематокрит, тем больше вязкость крови и хуже ее реологоческие свойства. Геморрагия, гемодилюция и, наоборот, плазмопотеря и дегидратация значительно отражаются на реологических свойствах крови. Поэтому, например, управляемая гемодилюция является важным средством профилактики реологических расстройств при оперативных вмешательствах. При гипотермии вязкость крови возрастает в полтора раза по сравнению с таковой при 37оС, но если снизить гематокрит с 40% до 20% , то при таком перепаде температур вязкость не изменяется. Гиперкапния повышает вязкость крови.  При снижении рН крови на 0,5 и  высоком гематокрите вязкость крови увеличивается втрое. 

Расстройства реологических свойств крови

Основной феномен реологических расстройств крови — агрегация эритроцитов, совпадающая с повышением вязкости. Чем медленнее поток крови, тем более вероятно развитие этого феномена. Так называемые ложные агрегаты (“монетные столбики”) носят физиологический характер и распадаются на здоровые клетки при изменении условий. Истинные агрегаты, возникающие при патологии, не распадаются, порождая явление сладжа (в переводе с английского как “отстой”). Клетки в агрегатах покрываются белковой пленкой, склеивающей их в глыбки неправильной формы. 

Главным образом, вызывающим агрегацию и сладж, является нарушение гемодинамики — замедление кровотока, встречающееся при всех критических состояниях — травматическом шоке, геморрагии, клинической смерти, кардиогенном шоке и т. д. Очень часто гемодинамические расстройства сочетаются и с гиперглобулинемией при таких тяжелых состояниях, как перитонит, острая кишечная непроходимость, острый панкреатит, синдром длительного сдавления, ожоги. Усиливают агрегацию состояния жировой, амниотической и воздушной эмболии, повреждение эритроцитов при искусственном кровообращении, гемолиз, септический шок и т. д., т.е. все критические состояния. 

Можно сказать, что основной причиной нарушения кровотока в капилляроне является изменение реологических свойств крови, которые в свою очередь зависят главным образом от скорости кровотока. Поэтому нарушения кровотока при всех критических состояниях проходят четыре этапа. 

I этап — спазм сосудов-сопротивлений и изменение реологических свойств крови. Стрессорные факторы (гипоксия, страх, боль, травма и т.д.) ведут к гиперкатехолемии, вызывающей первичный спазм артериол для централизации кровотока при кровопотере или снижении сердечного выброса любой этиологии (инфаркт миокарда, гиповолемия при перитоните, острой кишечной непроходимости, ожогах и т.д.). 

Сужение артериол сокращает скорость кровотока в капилляроне, что меняет реологические свойства крови и ведет к агрегации клеток и сладжу. С 

этого начинается II этап нарушения микроциркуляции, на котором возникают следующие явления: 

1. Возникает ишемия тканей, что ведет к увеличению концентрации кислых метаболитов, активных полипептидов. Однако явление сладжа характерно тем, что происходит расслоение потоков, а вытекающая из капиллярона плазма может уносить в общую циркуляцию кислые метаболиты и агрессивные метаболиты. Таким образом, функциональная способность органа, где нарушилась микроциркуляция, резко снижается. 

2. На агрегатах эритроцитов оседает фибрин, вследствие чего возникают условия для развития ДВС-синдрома. 

3. Агрегаты эритроцитов, обволакиваемые веществами плазмы, скапливаются в капилляроне и выключаются из кровотока — возникает секвестрация крови. 

Секвестрация отличается от депонирования тем, что в “депо” физико-химические свойства крови не нарушены, и выброшенная из депо кровь включается в кровоток вполне физиологически пригодной. Секвестированная кровь же должна пройти легочный фильтр, прежде чем снова будет соответствовать физиологическим параметрам. 

Если кровь секвестируется в большом количестве капилляронов, то соответственно уменьшается ее объем. Поэтому гиповолемия возникает при любом критическом состоянии, даже при тех, которые не сопровождаются первичной крово- и плазмопотерей. 

III этап реологических расстройств — генерализованное поражение системы микроциркуляции. Раньше других органов страдают печень, почки, гипофиз. Мозг и миокард страдают в последнюю очередь. После того как секвестрация крови уже снизила минутный объем крови, гиповолемия с помощью дополнительного артериолоспазма, направленного на централизацию кровотока, включает в патологический процесс новые системы микроциркуляции — объем секвестированной крови растет, вследствие чего ОЦК падает. 

IV этап — тотальное поражение кровообращения, нарушение метаболизма, расстройство деятельности метаболических систем. 

Подводя итог вышеизложенному, можно выделить при всяком нарушении кровотока 4 этапа: нарушение реологических свойств крови, секвестрация крови, гиповолемия, генерализованное поражение микроциркуляции и метаболизма. 

Причем в танатогенезе терминального состояния не имеет существенного значения, что же было первичным: уменьшение ОЦК вследствие кровопотери или уменьшение сердечного выброса из-за правожелудочковой недостаточности (острый инфаркт миокарда, например). При возникновении вышеописанного порочного круга результат гемодинамических нарушений оказывается в принципе одинаковым. 

Простейшими критериями расстройств микроциркуляции могут служить: уменьшение диуреза до 0,5 мл/час на 1 кГ массы тела и менее, разница между накожной и ректальной температурой более 2° С. 

studfile.net

Состав и свойства крови

Количество крови в теле крупного рогатого скота составляет 7,6 — 8,3% к живому весу. При обескровливании животных извлекается около 50 — 60% этого количества, остальная остается в составе мясной туши и внутренних органов.

Химический состав крови зависит от вида, возраста и упитанности животных и условий их предубойного содержания. Данные по химическому составу крови животных приведены в табл. 21.

Таблица 21

Химический состав крови животных

Составные части

Содержание в крови, %

Вода

79,1 — 82,1

Белки

16,4 — 18,9

Липиды

0,31 — 0,39

Холестерин

0,04 — 0,19

Прочие органические вещества

0,03 — 0,67

Минеральные вещества

0,8 – 0,9

Основную массу белков крови составляют альбумин, глобулин, фибриноген и гемоглобин. В табл. 22 приведено примерное содержание их в крови животных.

Таблица 22

Содержание в крови животных (в % к общему белку)

Белки

Крупный рогатый скот

Мелкий рогатый скот

Альбумин

3,6

3,8

Глобулин

9,0

3,0

Фибриноген

0,6

0,5

Гемоглобин

10,3

9,3

В состав органических небелковых веществ крови входят азотистые и безазотистые экстрактивные вещества, весьма разнообразные по химическому составу. Примерно около 75% из общего количества небелковых органических веществ приходится на долю липидов. Неорганические вещества крови представлены минеральными соединениями и в органически связанной форме с белками (железо, медь).

Величина сухого остатка крови непостоянна. Она меньше у молодняка, у животных низких категорий упитанности и в зависимости от питьевого режима перед убоем меняется в пределах 1 — 2%. Вместе с этим изменяется и содержание белков. Количество липидов также не одинаково. Так, в крови свиньи оно может достигать 0,5 — 0,7%.

Кровь продуктивных сельскохозяйственных животных является ценным сырьем для производства пищевой, лечебной, кормовой и технической продукции. Это обусловлено количеством и качеством белков, входящих в ее состав, и содержанием физиологически активных веществ.

3.3. Пищевая ценность мяса

Пищевая ценность мяса зависит от количественного соотношения воды, белка, жира, содержания незаменимых аминокислот, полиненасыщенных жирных кислот, витаминов, микро- и макроэлементов, а также органолептических показателей мяса.

При оценке биологической ценности белков наряду с учетом степени сбалансированности незаменимых аминокислот принимается во внимание уровень гидролиза белков пищеварительными ферментами. Рассматривая мясо прежде всею как источник полноценных белков, заметим, что определяющее значение для его пищевой ценности имеет содержание мышечной ткани.

О пищевой ценности мяса судят по так называемому «качественному белковому показателю», который представляет собой отношение содержания триптофана (как индекса полноценных белков мышечной ткани) к оксипролину (показателю неполноценных соединительнотканных белков). Качество мяса характеризуют также по соотношению: вода — белок, жир — белок, вода — жир. Между содержанием влаги и жира существует обратная корреляционная зависимость.

В комплекс показателей, определяющих пищевую ценность мяса, входят органолептические показатели: цвет, вкус, запах, консистенция, сочность и др. Цвет мяса зависит от концентрации миоглобина в мышечной ткани и состояния белковой части макромолекулы — глобина. На окраску термообработанного мяса могут влиять продукты, возникающие в результате реакций меланоидинообразования. Жир, входящий в состав мяса при наличии каротиноидных пигментов может приобретать желтый оттенок.

Одним из важнейших свойств мяса является его консистенция — нежность и сочность, которая зависит от количества, соединительной ткани, содержания внутримышечного жира, размера мышечных пучков и диаметра мышечных волокон, состояния мышечных белков — степени их гидратации, ассоциации миозина и актина, уровня деструкции. На нежность мяса влияет не только общее содержание соединительной ткани, но и соотношение в ней коллагена и эластина, степень полимеризации основного вещества — мукополисахаридов.

Запах и вкус мяса зависят от количества и состава экстрактивных веществ, наличия летучих компонентов и тех преобразований в их составе, которые возникают в ходе тепловой обработки. На формирование вкусоароматических характеристик мяса влияют глютатион, карнозин, ансерин, глютаминовая кислота, треонин, серосодержащие аминокислоты, продукты распада нуклеотидов, креатин, креатинин, углеводы, жиры и широкий спектр летучих компонентов (серосодержащие, азотсодержащие, карбонильные соединения, жирные кислоты, кетокислоты, продукты реакций меланоидинообразования).

Химический и морфологический состав мяса, его opганолептические особенности зависят от вида, породы, пола, возраста, упитанности, технологии выращивания и откорма животных, частей туши.

Большим резервом увеличения ресурсов мяса является повышение массы забиваемого скота и сокращение сроков его откорма. Соединительная ткань, органически входящая в состав мяса снижает его пищевую ценность, усвояемость и кулинарные свойства. Этим объясняется низкая товарная ценность туш или отдельных ее частей, содержащих много соединительной ткани. Такое мясо малопитательно, жестко, его относят к низшим сортам, усвояемость хуже.

Жировая ткань — энергетическое депо для организма. Жировая ткань — это второй после мышц морфологический компонент, определяющий качество мя­са. При этом важное значение имеет не только ее количество, но и расположение по туте. Наиболее ценным является мясо с внутримышечными жировыми прослойками. Пищевая ценность жировой ткани обусловливается питательностью содержащегося в ней жира, поскольку другие ее составные части не имеют существенного значения. В состав жиров входят биологически ценные непредельные жирные кислоты и жирорастворимые витамины (А, Д, Е).

Биологическая ценность животных жиров, а у некоторых видов животных и лечебные свойства жира обусловливаются содержанием полиненасыщенных жирных кислот и других липоидных соединений, которые не синтезируются в организме человека, но играют важную роль в физиологических и обменных процессах организма. Жир мяса тощих животных имеет более низкую биологическую ценность и усвояемость, в нем ниже содержание полиненасыщенных и значительно выше количество насыщенных жирных кислот. Чем больше в жире ненасыщенных жирных кислот, тем ниже температура плавления и застывания и выше сто усвояемость организмом. Тугоплавкие жиры перевариваются длительно и усваиваются не полностью.

Кости скелета делят на трубчатые и плоские. В пищевом отношении трубчатые кости значительно лучше, чем плоские. В них содержится 15-25% костного жира и белок коллаген. В плоских костях имеется незначительное количество жира (2-3%) Пищевое значение трубчатых костей заключается в том, что при варке из них выделяется ароматный костный жир и вещества, которые в совокупности обеспечивают получение жирного, густого и ароматного бульона.

В мясной промышленности хрящи используют для получения желатина, клея и мясокостной муки. Находясь в составе мяса, костная и хрящевая ткани снижают его пищевую ценность.

Влияние на пищевую ценность видовых особенностей.На промышленную переработку поступают крупный и мелкий рогатый скот, свиньи, куры, гуси, утки, индейки. Мясо различных животных в соответствии с особенностями морфологического состава отличается по содержанию воды, белка и жира и по энергетической ценности (табл. 28).

Таблица 28

Химический состав мяса животных

Мясо

Содержание, г на 100 г съедобной части

Энергетическая ценность, кДж

влаги

белка

жира

золы

Говядина

67,7

18,9

12,4

1,0

782

Баранина

67,6

16,3

15,3

0,8

849

Свинина

51,6

14,6

33,0

0,8

1485

Мышечная ткань говядины, баранины и свинины отличается по качественному белковому показателю (соответственно 4,7; 4,0 и 5,5). Вследствие особенностей количественного соотношения мягких тканей говядина, баранина и свинина имеют некоторые различия в составе незаменимых и заменимых аминокислот (табл. 29).

Таблица 29

Аминокислотный состав мяса животных

Наименование аминокислот

Содержание, мг на 100 г

в говядине

в баранине

в свинине

Незаменимые аминокислоты

7131

5778

5619

В том числе:

Валин

1035

820

831

Изолейцин

782

754

708

Лейцин

1478

1116

1074

Лизин

1589

1235

1239

Метионин

445

356

342

Треонин

803

688

654

Триптофан

210

198

191

Фенилаланин

796

611

580

Заменимые аминокислоты

11292

9682

8602

В том числе:

Аланин

1086

1021

773

Аргинин

1046

993

879

Аспарагиновая

1771

1442

1322

Гистидин

710

480

575

Глицин

937

865

645

Глутаминовая

3073

2459

2224

Оксипролин

290

295

170

Пролин

685

741

650

Серин

780

657

611

Тирозин

658

524

520

Цистин

259

205

183

Общее количество

18429

15460

14221

Примечание. Приведены данные для говядины и баранины I категории и мясной свинины.

При оценке питательной и биологической ценности мяса исходят, прежде всего, из количественного и качественного соотношения содержащихся в нем незаменимых аминокислот (табл. 30).

Таблица 30

Аминокислотный состав белков мышечной ткани мяса

Аминокислота

Содержание, %

Миозин

Актин

Миоген А

Тропомиозин

Миоглобин

Аланин

6,50

6,30

8,56

8,80

7,95

Глицин

1,90

5,00

5,61

0,40

5,85

Валин

2,60

4,90

7,40

3,13

4,09

Лейцин

15,60

8,25

11,50

15,60

16,8

Изолейцин

7,50

Пролин

1,90

5,10

5,71

1,30

3,34

Фенилаланин

4,30

4,80

3,06

4,60

5,09

Тирозин

3,40

5,80

5,31

3,10

2,40

Триптофан

0,80

2,05

2,31

0,00

2,34

Серин

4,33

5,90

7,30

4,38

3,46

Треонин

5,10

7,00

7,47

2,90

4,56

Цистин

1,40

1,34

1,12

0,76

0,00

Цистеин

0,00

Метионин

3,40

4,50

1,17

2,80

1,71

Аргинин

6,60

6,33

7,80

2,20

Гистидин

2,41

2,90

4,21

0,85

8,50

Лизин

11,92

7,60

9,54

15,70

15,50

Аспарагиновая кислота

8,90

10,90

9,70

9,10

8,20

Глютаминовая кислота

22,10

14,80

11,40

32,90

16,48

При хранении мяса количество аминокислот снижается. Чем больше в мясе триптофана и меньше оксипролина, тем меньше его белковая полноценность. В говядине высшей упитанности соотношение триптофана и оксипролина равно 5,8, а в нижесредней — 2,5.

Существенной разницей в переваримости белков различных видов мяса не установлено. Коэффициент усвояемости организмом человека говядины в среднем составляет 82-83%.

Различные виды мяса отличаются по составу липидов и содержанию жирных кислот (табл. 31), а также по количеству витаминов (табл. 32). Для характеристики пищевой ценности мяса существенное значение имеют экстрактивные вещества (экстрагируются при обработке мяса водой), которые обладают вкусовыми, ароматическими и биологически активными свойствами, придают мясу и бульону специфический вкус и запах.

Все они принимают активное участие в обменных процессах. Экстрактивные вещества воздействуют на железы желудочно-кишечнога тракта, возбуждая выделение секретов, что ведет к появлению аппетита и лучшей ус­вояемости мяса. Карнозин и ансерин стимулируют секрецию пищеварительных желез, холин усиливает перистальтику кишечника и одновременно является витамином.

Таблица 31

Состав липидов мяса животных

Липиды

Содержание, г на 100 г съедобной части

говядины

баранины

свинины

Триглицериды

13,10

15,30

32,00

Фосфолипиды

0,80

0,88

0,84

Холестерин

0,07

0,07

0,07

Полиненасыщенные жирные кислоты

линолевая

0,35

0,33

3,28

линоленовая

0,12

0,14

0,22

арахидоновая

0,017

0,016

0,14

Таблица 32

Содержание витаминов в мясе животных

Витамины

Содержание, мг на 100 г съедобной части

говядины

телятины

баранины

свинины

B1

0,6

0,14

0,08

0,52

В2

0,15

0,23

0,14

0,14

РР

2,8

3,3

2,5

2,4

Видовые различия мяса проявляются в окраске за счет разного содержания миоглобина в мышечной ткани и каротина в жировых отложениях, а также в запахе, вкусе и консистенции вследствие особенностей количественного и качественного состава компонентов, формирующих вкусоароматические характеристики продукта.

Влияние упитанности на пищевую ценность.Степень, откормленности животных влияет на выход мяса, его тканевый и химический состав, пищевую и энергетическую ценность.

В зависимости от упитанности говядину и телятину подразделяют на I и II категории. К I категории относят мясо, полученное при убое животных высшей и средней упитанности, ко II категории — мясо от скота ниже средней упитанности (табл. 33).

Таблица 33

Категория

упитанности

Соотношение

Энергетическая ценность, кДж

воды-белка

воды-жира

белка-жира

Говядина

I

3,58

5,45

1,52

782

II

3,55

10,24

2,89

602

Баранина

I

4,15

4,42

1,07

849

II

3,33

7,70

2,3

686

Свинина

I

3,34

1,97

0,59

1322

II

3,40

0,79

0,23

2046

III

3,53

1,56

0,44

1486

studfile.net

Удивительные свойства крови / Новости телеканала «Россия 2» / Russia2.tv

Удивительные свойства крови

20 апреля в России отмечается Национальный день донора. Этот праздник посвящен тем, кто безвозмездно сдает свою кровь во благо здоровья и жизни других людей. Кровь – главная жидкость в организме человека. Медики активно изучают новые свойства крови, ученые работают над созданием ее универсальных заменителей, а кто-то при помощи крови успешно практикует омоложение.

Состав крови постоянно меняется 

Организм человека пронизан километрами сосудов: капилляров, артерий и вен. По ним непрерывно движется самая удивительная жидкость в мире — кровь. Но воды в ней всего 50 процентов. На самом деле, кровь – это соединительная ткань, такая же, как кости, хрящи или жир, только в жидком виде. Неоднородный состав крови и придает ей необычные физические свойства. Только в одной капле крови заключается информация о состоянии всего организма. Состав крови не постоянен. Он может измениться буквально за считанные минуты. Влияет все: пища, вода, воздух и даже настроение. До начала 20 века никто и не предполагал, что кровь может быть разной. Переворот в этой области знаний совершил австрийский врач в 1901 году, доказав на опыте существование четырех групп крови у человека. Однако утверждение, что на планете существуют всего лишь четыре типа людей, соответствующих четырем большим группам крови, было бы чрезмерным упрощением. Реальность намного сложнее и интереснее.

Групп крови не четыре, а шесть

Пока современные медики изучают необычные свойства и состав четырех общеизвестных групп крови, французские ученые обнаружили две новые — Ланджерайс и Джуниор. Последние 40 лет у пациентов возникали проблемы при переливании крови или при беременности и, чтобы узнать характеристики редких групп крови, их аналоги решили поискать у животных. Результат буквально ошеломил специалистов. А исследования поставили гематологов перед еще одной загадкой: группа крови Джуниор отрицательная оказалась наиболее распространена среди японцев и европейских цыган. 

С помощью крови можно омолодиться

Интересно, для кого же группа крови не имеет никакого значения? О том, что кровь есть жизнь, часто говорится в различных культах и учениях. Омолаживать свой организм с помощью чужой крови — древняя вампирская традиция. Однако вампиры ее не переливают, а принимают перорально. Граф Дракула, как известно, продлевал свою жизнь, питаясь молодой человеческой кровью, предпочитая девственниц. В наше время для обычных людей тоже есть процедура омоложения, к счастью, менее кровавая и одобренная традиционной медициной – плазмаферез. Сегодня его предлагают чуть ли не на каждом углу и называют чисткой крови.

Созданы универсальные заменители крови 

В то время как модницы занимаются омоложением, ученые всего мира работают над созданием универсальных заменителей крови, переливать которые было бы всегда безопасно, хранить долго и использовать для людей с любой группой крови и резус-фактором. Внешне синтетическая кровь напоминает настоящую и выглядит как красная тягучая масса. Но, в отличие от живой крови, заменитель может выполнять только одну функцию – насыщение кислородом.

У человека может меняться цвет крови   

Кислород, которым кровь насыщается в легких, переносится к органам с помощью специального белка-переносчика – гемоглобина, который содержится в красных кровяных тельцах, эритроцитах. Цвет крови человека не всегда одинаковый. Кислород отдает ярко-красная кровь, становясь темно-бордовой. Кровь из артериальной превращается в венозную, чтобы затем, пройдя через микрокапилляры легких очиститься и вновь наполниться полезными веществами. И так до бесконечности. Однако донорскую кровь забирают из «грязных» вен, а не из чистых артерий. Почему? Дело в том, что в отличие от артерий, вены расположены гораздо ближе к поверхности кожи и скорость кровотока в них ниже. Забор крови из артериального сосуда требует серьезной подготовки. Неловкое движение — и остановить кровотечение будет очень сложно.

Кровь расскажет о характере человека

Еще одну интересную теорию выдвинули современные исследователи: кровь может рассказать о характере человека. Люди с первой группой крови отличаются любознательностью и стремлением к совершенству. Наличие второй группы говорит о веселом, но эксцентричном и эгоистичном нраве. Люди, имеющие третью группу, любопытны, щедры, но упрямы. У людей с четвертой группой крови есть художественный вкус, но они загадочны и непредсказуемы. Все эти факты звучат, как предсказания гороскопа. Но, тем не менее, многие люди используют их в повседневной жизни: при приеме на работу, выбирая мужа или при заключении важных контрактов.

2.russia.tv

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *